RATU NAVULA COLLEGE YEAR 12 PHYSICS SUPPLEMENTARY NOTES 5

LESSON 79 – 80 EXP 9 REFLECTION AND REFRACTION OF WATER WAVES

LESSON 81

LO: interference and superpositioning in Youngs double slit experiment

INTERFERENCE OF LIGHT

"When two waves of equal amplitude and velocity moving in opposite direction overlap each other."

-THOMAS YOUNG demonstrated that light passing through two holes very close together diffracts and forms an interference pattern.

-constructive interference: two waves from individual slit overlap each other and arrive at a particular point at the same time (in phase).

- Bright band
- Anti node
- In phase
- Crest meets crest
- Trough meets trough

-destructive interference: two waves arrive at a particular point not at the same time (out of phase)

- Dark band
- Node
- Out of phase
- Crest meet trough
- Trough meets crest

- Path difference P.D= d sin θ (difference between the distances travelled by two waves meeting at a point.

LESSON 82

LO: Study YOUNG'S DOUBLE SLIT EXPERIMENT

- In Young's INTERFEROMETER, **monochromatic light (light of one color)** from the source is divided into two parts using double slit arrangement.
- wave model of lights supports Youngs Experiment since only waves show interference of light through superpositioning.

Constructive interference (n=0,1,2...)(bright band,maximum)

$$d\sin\theta = \frac{dx}{L} = n\lambda$$

Destructive interference (n=1,2..)(dark band,minimum)

$$d \sin \theta = (n-1/2) \aleph = \frac{xd}{L}$$

Where:

n= nth node on antinode

 $(m = 0, \pm 1, \pm 2, ...)$

λ= wavelength of light used

tice that narrowing slit separation, d, causes the fringes to spread

out. (A larger angle is required for the same path difference.)

L= distance of the screen from slits

d= slit separation

x= fringe distance from central maxima.

Young's Double Slit Interference

Coherent light: lights having same wavelength and a fixed phase relationship.

EFFECT OF CHANGING λ ,L and d on fringe spacing (Δx)

Changing λ : $\Delta x \propto \lambda$		Changing d: $\Delta x \propto 1/d$ If $d \uparrow \Delta x \downarrow$

Example:

Find the position of the First bright band from the central bright band if n=1 , d=1mm, L=2m and λ =10 6 m

n
$$\lambda = \frac{xd}{L}$$

(1) (10⁻⁶) = x.1 x 10⁻²/2
 $X = 2x 10^{-2} \text{m}$

2019

Monochromatic light of wavelength 700 nm passes through two slits 1×10^{-5} m apart and shines on a screen 3 m away. Bright and dark fringes are formed as shown below.

At what angle to the central antinodal line is the 3rd dark fringe formed?

(2 marks)

LESSON 83 – 84 EXPERIMENT 10 INTERFERENCE AND DIFFRACTION OF WATER WAVES

LESSON 85

LO: Study electromagnetic spectrum

THE ELECTROMAGNETIC SPECTRUM

- -examples of electromagnetic waves are: radio waves, microwaves, visible light and x-rays.
- -in vacuum, all electromagnetic waves have constant speed $c = 3x10^8$ m/s.
- Energy α Frequency. (E=hf) h:Planck's constant

Visible Light

ROYGBIV

Transverse waves	Longitudinal waves		
EM waves: Light waves, microwaves, radio	Sound waves		
waves			
Water waves (ripples on water surface)			
Vibrations in a guitar string			
Seismic S-waves (earthquake)	Seismic P-waves(earthquakes and		
	explosions)		

SAMPLE 2020

Electromagnetic waves consists of visible and non-visible spectra.

- (i) Identify **one** component of the visible spectra.
- (ii) Identify the component of the electromagnetic spectra that has the shortest wavelength.

LESSON 86

LO: Describe electromagnetic spectrum and solve practical questions.

The Electromagnetic Spectrum

2018

Which of the following electromagnetic waves is used to transfer cellular telephone messages?

- A. X-rays
- B. UV rays
- C. Microwaves
- D. Gamma rays

2017

The table given below shows the region of the electromagnetic spectrum.

Radi wave	Microwaves	Infrared light	A	Ultraviolet light	В	Gamma rays		
(i)	Write down the names of regions A and B.							
(ii)	Which electromagnetic spectrum has the longest wavelength?							
(iii)	Which electroma	gnetic spec	trum has th	e highest ene	rgy?		(1 mark)	

2014

- 1. Which characteristic of the electromagnetic spectrum always remains constant?
- A. Speed B. Energy C. Frequency D. Wavelength