Ratu Navula College

Year 12 Mathematics Lessons Notes - Week 1

Strand 3: Graphs Sub Strand: 3.1 Graphs and Intersections

Lesson 38: Square Root \sqrt{x} Graphs

Learning Outcome: Sketch the square graph by using transformation method.
$>$ For $y=+\sqrt{x}$ the graph will be:

$>$ For $y=-\sqrt{x}$ the graph will be:

The transformation for a square root graph will be of the form:

EXAMPLE 1: Draw the graph of $y=\sqrt{x}$ and State the domain

x	-1	0	1	2	4
$y=\sqrt{x}$	$\sqrt{-1}=$ undefined	$\sqrt{0}=0$	$\sqrt{1}=1$	$\sqrt{2}=1.41$	$\sqrt{4}=2$

$$
\text { Domain }=\{x: x \geq 0, x \in R\}
$$

EXAMPLE 2: The diagram below shows the graph of $g(x)=\sqrt{x-2}$

a) Write down the coordinates of point P.
b) Find $\mathrm{g}(-x)$.
c) On the pair of axis drawn, draw the graph of $g(-x)$.
d) Describe the transformation.
e) State the domain and range of $g(-x)$.

Answers:
a) coordinates of point P $x=6$, Substitute

$$
g(6)=\sqrt{6-2}
$$

$$
=\sqrt{4}=2 \therefore(6,2)
$$

b) Substitute $-x$ in place of x

$$
\begin{aligned}
& g(x)=\sqrt{x-2} \\
& g(-x)=\sqrt{-x-2}
\end{aligned}
$$

c) Use tables:

d) Reflection in the y-axis
e) Domain $\{x: x \leq-2, x \in R\}$

$$
\text { Range }\{y: y \geq 0, y \in R\}
$$

Class Activity 38

1. State domain and range of the graph:

2. Sketch the graph of $y=-\sqrt{x-2}$ and state the domain and range.
3. The graph of the function $g(x)$ is shown below.

a) Write the equation of $g(x)$.
b) Write down the y-intercept of $g(x)$
c) State the domain and range of $g(x)$

Strand 3: Graphs Sub Strand: 3.1 Graphs and Intersections

Lesson 39: Logarithmic/Exponential Graphs

Learning Outcome: Sketch the logarithmic and exponential graph using table method.

Note:
Exponential and Logarithmic graphs are inverses or mirror reflections of each other

EXAMPLE 1: Sketch graph of $y=\log _{2} x$

x	0.125	0.25	0.5	1	2
$y=\log _{2} x$ $=\frac{\log x}{\log 2}$	-3	-2	0	1	

- The y-axis is an asymptote because $\log 0$ is undefined

EXAMPLE 2: A function is given as $f(x)=3^{x}$
i. Find the coordinates of the y-intercept
ii. Sketch the graph of $f(x)$ and label it clearly

Another function is defined as $g(x)=\log _{3} x$
iii. On the pair of axes, Sketch the graph of $g(x)$, showing the x - intercept clearly
iv. Describe fully the transformation that maps the graph of $f(x)$ onto the graph of $g(x)$.

Answers:

i. y - int, let $\mathrm{x}=0$ and solve
$f(x)=3^{x}$
$\therefore y=3^{x}$
$=3^{0}=1$
ii. Sketch: using tables

x	-2	-1	0	1	2
$y=3^{x}$	$y=3^{-2}=\frac{1}{9}$	$y=3^{-1}=\frac{1}{3}$	$y=3^{0}=1$	$y=3^{1}=3$	$y=3^{2}=9$

ii / iii Sketch

Prove that $f(x)=3^{x}$ and $y=\log _{3} x$ are inverses of each other.
To find the inverse:

$$
y=3^{x}
$$

Interchange \mathbf{x} and \mathbf{y}

$$
\begin{aligned}
& 3^{y}=x \\
& \log 3^{y}=\log x \\
& y=\frac{\log x}{\log 3} \\
& y=\log _{3} x
\end{aligned}
$$

iv. Reflection in the line $y=x$.

Class Activity 39

1. Sketch the following graphs:
a) $y=\log x$
b) $y=\log _{3} x$
2. Sketch the following graphs:
a) $y=-2^{x}$
b) $y=4^{-2 x}$
c) $f(x)=-0.5^{x}$

Strand 3: Graphs Sub Strand: 3.1 Graphs and Intersections

Lesson 40: Graphs of Circles:

Learning Outcome: Determine the radius and sketch the graph of the circle

- The equation of a circle at the centre of the origin $(0,0)$ with the radius r is given as $x^{2}+y^{2}=r^{2}$
- The general equation of a circle with the radius r and the centre (a, b) is $(\boldsymbol{x}-\boldsymbol{a})^{2}+(\boldsymbol{y}-\boldsymbol{b})^{2}=\boldsymbol{r}^{2}$

Example

1. Sketch the graph $x^{2}+y^{2}=16$

Graphing a circle centered at the origin with $r^{2}=16$, thus $r=4$.

2. Sketch the equation of $(x-3)^{2}+(y+1)^{2}=25$

Centre of $(3,-1)$ with a radius of 5 .

Class activity 40

Sketch the following graphs
a) $x^{2}+y^{2}=3^{2}$
b) $x^{2}+y^{2}=36$
c) $(x-2)^{2}+(y+3)^{2}=9$

Strand 3: Graphs Sub Strand 3.2 : Simultaneous Equation

Lesson 41: Application of Simultaneous Equation

Learning Outcome: Use elimination, substitution method to solve the simultaneous equations.

- Simultaneous means solve for variables at the same time.
- Three methods includes are:
\checkmark Elimination method
\checkmark Substitution method
\checkmark Graphical method

* Elimination method

- Inorder to eliminate one variable, either add or subtract the two equation.
- Solve for one variable first
- Substitute in any of the equation to get the next variable.

* Substitution method

- It means put one equation into another equation

Example 1

Solve these two equations simultaneously.

$$
\begin{gathered}
4 x-3 y=3 \text { and } 10 x+3 y=4 \\
+\quad \begin{array}{c}
4 x-3 y=3 \\
10 x+3 y=4 \\
14 x=7 \\
x=1 / 2 \text { or } 0.5
\end{array}
\end{gathered}
$$

Substitute in any equation:

$$
\begin{gathered}
4 x-3 y=3 \\
4(0.5)-3 y=3 \\
2-3 y=3 \\
2-2-3 y=3-2 \\
-3 y=1 \\
y=-\frac{1}{3}
\end{gathered}
$$

Example 2

To solve the above graphs we will need to make sure that y is the subject in both equations.

$$
\begin{aligned}
& 3 y=x+1 \text { and } 2 y-4 x-4=0 \\
& 3 y=x+1 \rightarrow y=\frac{x+1}{3} \\
& 2 y-4 x-4=0 \rightarrow 2 y=4 x+4 \rightarrow y=2 x+2 \\
& \begin{array}{|l|}
\hline y=\frac{x+1}{3} \\
y
\end{array} \\
& \left.\begin{array}{||c|}
\hline y=y \\
\hline \begin{array}{|l|}
\hline \frac{x+1}{3}=2 x+2 \\
x+1=3(2 x+2)
\end{array} \\
\hline
\end{array} \rightarrow \begin{array}{l}
x+1=6 x+6 \\
x=6 x+6-1
\end{array} \rightarrow \begin{array}{|c|}
\hline x=6 x+5 \\
x-6 x=5
\end{array} \rightarrow \begin{array}{|c|}
\hline-5 x=5 \\
x=-1
\end{array} \right\rvert\, \\
& y=2 x+2 \rightarrow y=2(-1)+2 \rightarrow y=-2+2 \rightarrow y=0
\end{aligned}
$$

Point of intersection is $(-1,0)$

Example 3

A total of 925 tickets were sold for $\$ 5925$. If adult tickets cost $\$ 7.50$ and children's tickets cost $\$ 3.00$, how many tickets of each kind were sold?

Answers:

Let x be the number of adult tickets.
Let y be the number of children's tickets.

$$
\begin{aligned}
& x+y=925 \\
& 7.5 x+3 y=5925 \\
& \\
& 3 x+3 y=2775 \text { Multiply this equation by } 3 \text { and subtract } \\
&-\quad 7.5 x+3 y=5925 \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& -4.5 x=-3150 \\
& x=700
\end{aligned}
$$

Substitute in any equation:

$$
\begin{aligned}
& x+y=925 \\
& 700-700+y=925-700 \\
& Y=225
\end{aligned}
$$

Thus 700 adult tickets and 225 children's tickets.

Class Activity 41

1. Two numbers have a sum of 90 and one is 5 times the other.
a) Write down the pair of simultaneous equation.
b) Solve for the values of the two numbers.
2. The total number of girls and boys in a class is 42 . There are more girls than boys in the class. The difference between the number of boys and girls is 16 . Find the number of girls and boys in the class.

Lesson 42: Linear and Quadratic Equation

Learning Outcome: Find the point of intersection between linear and quadratic graph.

Quadratic and linear graphs always meet at two places.

Example 1

Find the coordinates of point of intersection of the parabola $y=x^{2}-4$ and linear graph $y=x+2$.

- Sance there are two x vaitues we can conclade that toceth graphs intersect at two different points.

Example 2

Find the point of intersection of the graph $y=x^{2}+3 x+2$ and $y=x+1$.
At the point of intersoction, both graphs will have the sume y-value. Hence, we can solve both equations simultaneously.

To flud we y walue, we any of the given equanions.
$y=x+1 \rightarrow y=-1+1 \rightarrow y=0 \quad$ Povint of infersection $\rightarrow(-1,0)$
Given below is the graph of $y=x^{2}+3 x+2$ and $y=x+1$. In the graph, the point of interwodion is represented by a thick dot.

Class Activity 42

1. Determine the coordinates of the point where the parabola $y=x^{2}-6 x+8$ meets with the line $y=$ $-2 x+4$.
2. Find the point of intersection of the line $y=3 x+1$ with the parabola $y=x^{2}-3$

Strand 3: Graphs Sub Strand 3.2 : Simultaneous Equation

Lesson 43: Linear and Hyperbola Equation

Learning Outcome: Find the point of intersection between linear and hyperbola graph.

Hyperbolic equation and linear graph will meet at two places.

Example 1

Find the point of intersection $y=\frac{1}{x}$ and $y=\frac{x}{4}$

$$
y=\frac{1}{x} \quad y=\frac{1}{4} x
$$

Solve bowh equations simultioneously

$$
\begin{aligned}
& y=y \\
& \frac{1}{x}=\frac{1}{4} x \rightarrow \frac{1}{x}=\frac{x}{4} \rightarrow 1 \times 4=x \times x \rightarrow 4=x^{2} \\
& \hline
\end{aligned}
$$

$$
4=x^{2} \rightarrow x^{2}=4 \rightarrow x= \pm \sqrt{4} \rightarrow x= \pm 2
$$

Substirucle the x value into any of the equations

$$
\begin{array}{|l|}
\hline x=2 \\
\hline y=\frac{1}{x} \\
\hline y=\frac{1}{2} \\
y=\frac{1}{x}
\end{array} \rightarrow y, \begin{array}{|l|}
\hline x=-2 \\
\hline y=-\frac{1}{2} \\
\hline
\end{array}
$$

$$
\text { paines of inhersection } \rightarrow\left(2, \frac{1}{2}\right) \text { and }\left(-2,-\frac{1}{2}\right)
$$

Example 2

Find the point of intersection of $y=\frac{1}{x}$ and $y=x$
$y=\frac{1}{x} \quad y=x$
Solve both equations simultaneously

$y=y$
$\frac{1}{x}=x$

$1=x^{2} \rightarrow x^{2}=1 \rightarrow x= \pm \sqrt{1} \rightarrow x= \pm 1$
Substitude the x value into any of the equations

points of intersection $\rightarrow(1,1)$ and $(-1,-1)$

Class activity 43

1. Find the point of intersection of the curve $y=-\frac{2}{x}$ with the line $y=x-3$
2. Find the point of intersection of $y=\frac{5}{x-2}$ and the straight line $y=2 x-1$

Strand 3: Graphs Sub Strand 3.2 : Simultaneous Equation

Lesson 44: Linear Equation and Circle

Learning Outcome: Use elimination, substitution method to solve the simultaneous equations

Circles and linear equation meets at two points

Example 1

Find the point of intersection $x^{2}+y^{2}=25$ and $y=x$

$$
\begin{array}{|l|}
\hline x^{2}+y^{2}=5^{2} \\
y=x
\end{array} \rightarrow\left[\begin{array}{c}
{\left[\begin{array}{c}
\text { Subsuitute } \left.y=x \text { into } x^{2}+y^{2}=25\right] \\
x^{2}+(x)^{2}=25
\end{array} 2 x^{2}=25\right.}
\end{array}\right.
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Now solve for } x \\
\begin{array}{|l|}
\hline 2 x^{2}=25 \\
x^{2}=25 \div 2
\end{array}
\end{array} \rightarrow \begin{array}{l}
x^{2}=12.5 \\
x=\mp \sqrt{12.5}
\end{array} \rightarrow x= \pm 3 \cdot 54 \\
& \hline
\end{aligned}
$$

Substitute the x-value in the equation $y=x$

$$
\begin{array}{|l|l|}
\hline x=3.54 \\
y=x \\
y=3.54
\end{array} \quad \begin{aligned}
& x=-3.54 \\
& y=x \\
& y=-3 \cdot 54 \\
& \hline
\end{aligned}
$$

Points of intersections
$(3 \cdot 54,3 \cdot 54)$ and $(-3.54,-3 \cdot 54)$

Class Activity 44

1. Find the point of intersection of the graphs $x^{2}+y^{2}=2$ and $y+x-2=0$
2. Find the point of intersection of the circle $x^{2}+y^{2}=25$ and the straight line $y-x+3=0$
