STRAND 2 MEASUREMENT

SUSBSTRAND 2.1 UNITS OF MEASUREMENT AND PREFIXES

LESSON 30

LO: Give the basic SI units.

: State the values of commonly used prefixes.

SI units (Standard Units) and Symbols

- "International System."
- Standard unit: well defined units that the whole world agrees on.
- Basic units: metre, kilogram, second, ampere, Kelvin, candela, mole, radian.
- **Derived units:** all other units are made from basic units.

Quantity	Unit	Symbol
Length	metre	m
Macc	kilogram	kg
Time	second	s
Flectric current	ampere	A
Light	candela	cd
Temperatura	Kelvin	к
Amount	mole	mol
Ando	radian	rad

	Units of Modeura	ment	3.	Writ	e symbols for	r the follo	wing units:
5.2	Units of Medsure			(a) (b) (c) (d)	kilogram second ampere metre	(e) (f) (g) (h)	candela radian mole Kelvin
2,	Which SI unit would yo the following quantities? the unit and its symbol.	u use to measure Write the name of	4.	Wri (a) (b)	te the names A mol	of the fo (e) (f)	llowing units: kg K
	(a) mass (e (b) distance (f) (c) amount (c) (d) temperature (h	 light intensity electric current time angle 		(c) (d)	s rad	(g) (h)	m cd

Quantity	Unit	Symbol	Value
Length	metre	m	Formerly, 1 ten-millionth of the distance from the equator to the North Pole. Now defined as the distance travelled by light in a vacuum during 1/200,702,458 of a second.
	a an time a tra	cm	100 cm = 1 m
	centimetre	mm	1000 mm = 1 m
	milliometre	km	1 km = 1000 m
	Kilometre	n mile	1 n mile = 1852 m
	nautical mile	m²	$(1 \text{ m} \times 1 \text{ m})$
Area	square metre	cm*	$10.000 \text{ cm}^2 = 1 \text{ m}^2$
	square centimene	ba	$1 \text{ ba} = 100 \text{ m} \times 100 \text{ m} = 10,000 \text{ m}^2$
	nectare	m³	(1 m × 1 m × 1 m)
Volume	cubic metre	am.3	$1,000,000 \text{ cm}^3 = 1 \text{ m}^3$
	cubic centimetre	cm.	$1,000,0000 \text{ m}^3$
	litre	L.	$1 \text{ m} = 1 \text{ cm}^3$
	milkitte	mL	Formarky the mass of 1 dm ³ of pure water at 4°C.
Mass	kilogram	кg	Now defined as the mass of a platinum-iridium cylinder kept in Paris, France.
	gram	g	1000 g = 1 kg
	milligram	mg	1000 mg = 1 g
	tonne	t	1 t = 1000 kg
Time	Time second		Formerly, 1/86,400 of a day. Now defined in terms of the resonant frequency of a caesium atom: 9,192,631,770 cycles per second.
	minute	min	1 min = 60 s
	hour	h	1 h = 60 min
	day	d	1 d = 24 h
Angle	degree	0	One degree is defined as */180 radians.
	minute	•	1' = 1/eo of a degree
	second		1" = 1/eo of a minute
Temperature	degrees Kelvin	٩κ	273.16°K is defined as the triple point of water, where all three phases (solid, liquid, and gas) are in equilibrium.
	degrees Celsius	°C	0°C = 273.15°K (the freezing point of water)
Speed	metres per second	m/s	
	kilometre per hour	km/h	1 m/s = 3.6 km/h
Concentration	grams per litre	g/L	
	moles per litre	mol/L	
Density	grams per cubic cm	g/cm ³	
Data	bit	b	In the base 2 system of mathematics, a bit is one digit: either 0 or 1
	byte	B	1 byte = 8 bits
	kilobyte	kB	1 kB = 1024 bytes (210 bytes)*
	megabyte	MB	1 MB = 1024 kB (2 ²⁰ bytes)*
	gigabyte	GB	1 GB = 1024 MB (230 bides)*

*Strictly speaking, 1 kB is equal to 1000 bytes. However, in computing, amounts of data are measured in the base 2

SI Prefixes

- Used to change the size of our units.
- Multiply or divide a unit by power of 10.
 - Example: kilo means "x 1000"

milli means "÷ 1000"

Table 5.2 Common SI prefixes

Deafir	Symbol	Factor	Example	
Prenx	Symbol	108 (1 000 000)	1 Mm =	1,000,000 m
mega	M	10 (1,000,000)	4.1	1000 m
kilo	k	10° (1000)	1 Km =	1000 11
have		10^{2} (100)	1 hm =	100 m
necto		101 (10)	1 dam =	10 m
deca	da	10 (10)	t den	0.1 m
deci	d	10" (1/10)	1 am =	0.1111
	~	10 ⁻² (1/100)	1 cm =	0.01 m
cenu	C	10-3 (11/1000)	1 mm =	0.001 m
milli	m	10 (71000)	1	0.000001 m
micro	μ	10" (1/1,000,000)	iµm =	0.000001111

Example 1 Find the number of (a) grams in 15 kilograms, and (b) milliamperes in 1 ampere.

(a) grams in 15 kg	(b) Milliamperes in 1 A
1 kg = 1000 g	$1 \text{ mA} = \frac{1}{1000} \text{ A}$
: 15kg=15×1000g=15,000g	∴ 1000 mA = 1A

Explanation: There are 1000 g in 1 kg, so there are 15,000 g in 15 kg (a). One mA is 1/1000 A, so there are 1000 mA in 1 A (b).

How many centimetres are in a metre? If 1 cm = 1/100 m, then there are 100 cm in 1 m: $1 \text{ cm} = \frac{1}{100}$ m $\therefore 100 \text{ cm} = 1$ m The same is true for millimetres and micrometres: $1 \text{ mm} = \frac{1}{1000}$ m $\therefore 1000 \text{ mm} = 1$ m and $1 \mu \text{m} = \frac{1}{1.000,000}$ m $\therefore 1,000,000 \mu \text{m} = 1$ m

SI Prefixes

Example	Prefix		Multiply by		Reverse Example
One terawatt equals one trillion (1012) watts.	tera-	T	trillion	10 ¹²	One watt equals one trillionth (10 ¹²) terawatts.
One gigawatt equals one billion (10 ⁹) watts.	giga-	G	billion	10 ⁹	One watt equals one billionth (10 9) gigawatts.
One megawatt equals one million (106) watts.	mega-	M	million	106	One watt equals one millionth (10 ⁻⁶) megawatts.
One kilowatt equals one thousand (103) watts.	kilo-	k	thousand	10-9	One watt equals one thousandth (10 ⁻³) kilowatts.
		100			
One centimetre equals one hundredth (10°) of a metre.*	centi-	C	hundredth	10.2	One metre equals one hundred (10 ²) centimetres.
One millimetre equals one thousandth (103) of a metre.	milli-	m.	thousandth	10-3	One metre equals one thousand (10 ³) millimetres.
One micrometre equals one millionth (10 ⁻⁶) of a metre.	micro-	μ	millionth	10-6	One metre equals one million (10 ⁶) micrometres.
One nanometre equals one billionth (10 ⁻⁹) of a metre.	nano-	n	billionth	10.9	One metre equals one billion (10°) nanometres.
One picometre equals one trillionth (10 ⁻¹²) of a metre.	pico-	p	trillionth	10'12	One metre equals one trillion (1012) picometres.

"One centimetre equals 10² metre, but it is easier to think of it in reverse: one metre equals 10² centimetres.

Indices of 10

Word	Decimal	Index
Trillion	1,000,000,000,000	1012
Billion	1,000,000,000	10 ⁹
Million	1,000,000	105
Thousand	1,000	103
Hundred	100	10 ²
Hundredth	0.01	10-2
Thousandth	0.001	10-3
Millionth	0.000001	10-5
Billionth	0.00000001	10-9
Trillionth	0.00000000001	10-12

Use of Prefixes

1. You may combine many prefixes with one unit:

2. Or, one prefix with many units:

kilo gram watt watt kilometre kilometre kilogram kilogram kilowatt

Unit Conversion

1. Convert 50 metres to kilometres:

 $50 \, \text{hr} \times \frac{1 \, \text{km}}{1000 \, \text{hr}} = 0.05 \, \text{km}$ Conversion factor: 1 km = 1000 m

2. Convert 50 kilometres to metres:

 $50 \text{ Rmg} \times \frac{1000 \text{ m}}{1 \text{ Rmg}} = 50,000 \text{ m}.$ Conversion factor: 1000 m = 1 km

ACTIVITY

5.	3 SI Prefixes	6.	Write the most suitable unit for measuring:
1. 2.	Define the term <i>prefix</i> . Write the names and symbols of the SI prefixes that mean the following: (a) $\times 10$ (c) $\times 0.1$		 (a) the height of a building (b) the distance from Suva to Labasa (c) the height of a book (d) the height of a line of text (e) the thickness of a page of a book
3.	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	7.	 (c) the trialities of a page of a book Write the number of: (a) centimetres in one metre (b) milligrams in one gram (c) microamperes in one ampere (d) decimetres in one metre (e) candelas in one kilocandela
	(a) kilogram (e) megacandela (b) centimetre (f) microampere (c) millisecond (g) hectometre (d) decimetre (h) microgram	8.	Write in grams: (a) 1 kg (d) 2 kg (g) 22 kg (b) 1 mg (e) 2 mg (h) 15 mg (c) 1 ug (f) 5 ug (i) 35 ug
4. 5.	One mg is equal to: (a) 1000 g (c) 0.001 g (b) 100 g (d) 0.01 g Complete the following statements:	9.	(a) 1 km (d) 3 km (g) 25 km (b) 1 cm (e) 5 cm (h) 60 cm (c) 1 µm (f) 4 µm (i) 120 µm
	(a) $1 \text{ cm} = \m$ (e) $1 \text{ dm} = \m$ (b) $1 \mu g = \g$ (f) $1 \text{ hm} = \m$ (c) $1 \text{ ms} = \s$ (g) $1 \text{ Mcd} = \c \text{ cd}$ (d) $1 \text{ kA} = \A$ (h) $1 \text{ dam} = \m$	10.	Write in seconds: (a) 1 ms (d) 0.1 ms (g) 10 µs (b) 10 ms (e) 0.01 ms (h) 100 µs (c) 100 ms (f) 1 µs (i) 0.1 µs

SUSBSTRAND 2.2 CONVERSION OF UNITS

LESSON 31

LO: Convert from one unit to another.

CONVERTING BETWEEN UNITS

-Conversion factor: is a fraction that has the units we are converting to in the numerator and the units we are converting from in the denominator.

- The value of a conversion factor is **1**, so it does not change the value of the measurement. It only changes the units.

Example 1 Convert 25 cm to m

Convert 25 cm to metres Convert 0.25 m to centimetres 25 CHR.× 100 CHR $0.25 \, \text{m} \times \frac{100 \, \text{cm}}{1 \, \text{m}} = 25 \, \text{cm}$ $-=0.25 \, m$ Conversion factor Conversion factor (1 m = 100 cm) (100 cm = 1 m) Example 2 A school day lasts about 7 hours. How many seconds are there in a school day? (i) Hours to minutes (II) Minutes to seconds 60 s = 25,200 s $7h \times \frac{60 \text{ min}}{2} = 420 \text{ min}$ 420 mig × Timiq th There are There are 60 min in 1 h 60 seconds in 1 min

Unit Conversion

1. Convert 50 metres to kilometres:

 $50 \text{ Tr} \times \frac{1 \text{ km}}{1000 \text{ Tr}} = 0.05 \text{ km}$ Conversion factor: 1 km = 1000 m

Convert 50 kilometres to metres:

 $50 \operatorname{Rm} \times \frac{1000 \,\mathrm{m}}{1 \operatorname{Rm}} = 50,000 \,\mathrm{m}$ Conversion factor: 1000 m = 1 km

ACTIVITY

5.4 Converting Between Units 8. Convert: 1. Define the term conversion factor. Complete the following statements: (a) 1 min = ____ sec (g) 1 kg = ____ g (b) 1 h = ____ min (h) 1 g = ____ mg (c) 1 km = ____ m (i) 1 g = ____ µg (d) 1 m = ___ cm (j) 1 A = ____ mA (e) 1 m = ____ mm (k) 1 A = ____ µA (I) 1 s = ____ ms (f) 1 m = ____ µm 3. A conversion factor has a value of 1 because the numerator and denominator are equal. Fill the missing values in the conversion factors below: <u>1h</u> (d) <u>1m</u> (g) ____<u>sec</u> (e) ____mm (h) (b) (f) <u>1m</u> (i) 4. Choose the conversion factors from question 3 that you would use to convert from: (a) minutes to seconds (b) metres to kilometres (c) grams to micrograms (d) centimetres to metres 5. Write your own conversion factors to change: (a) hours to minutes (b) seconds to minutes (c) millimetres to metres (d) kilograms to grams 6. Convert the following measurements to diagonally: metres: Example: 10 trac $\times \frac{1 \text{ m}}{100 \text{ trac}} = 0.1 \text{ m}$ (a) 5 cm (d) 114.5 cm (g) 119.3 mm (b) 3.5 cm (e) 5 mm (h) 25 µm (f) 77 mm (i) 1349 µm (c) 89 cm 7. Convert the following measurements to the units indicated: Example: $0.03 \text{ track} \times \frac{100 \text{ cm}}{1 \text{ track}} = 3 \text{ cm}$ (a) 0.05 m to cm (d) 2.45 m to cm (b) 0.007 m to mm (e) 1.135 m to mm (c) 0.0005 m to µm (f) 0.00084 m to µm

- (a) 24 seconds to minutes
- (b) 13.9 kilogranns to grams
- (c) 2.43 centimetres to metres
- (d) 0.0093 grams to micrograms
- A cyclist travelled 0.5 km in 90 seconds.

- (a) Convert 90 seconds to hours.
- (b) Find the cyclist's speed in km/h.
- B5 paper (the size of this book) is 176 mm wide by 250 mm high.
 - (a) How many millimetres are there in 1 centimetre?
 - (b) Write a conversion factor to convert millimetres to centimetres.
 - (c) Use your conversion factor to find the size of B5 paper in centimetres.
- The cost of posting a book to the United States is \$10 per kilogram. You need to post a book that weighs 475 g.
 - (a) How many grams are there in 1 kg?
 - (b) Write a conversion factor with kg in the numerator and g in the denominator.
 - (c) Use your conversion factor to find the mass of the book in kg.
 - (d) Find the cost of posting the book.
- Television screens are measured in inches diagonally:

- (a) If 1^{*} = 2.54 cm, write a conversion factor to change inches to centimetres.
- (b) Find the size of a 25" (25 inch) television in cm.
- (c) Find the size of a 14" television in cm.
- (d) If a television screen measures 48 cm, what is its size in inches?

SUSBSTRAND 2.3 STANDARD FORM

LESSON 32

LO: Write numbers in standard form and vice versa

STANDARD FORM

In standard form, numbers are represented as products of powers (indices) of 10. Formally, standard form is $a \times 10^{b}$, where $1 \le a < 10$ and b is an integer.

In standard form, num-
bers are represented as
products of powers of 10.
On your calculator "112"
means 1×10^{12} .
To enter 1 × 10 ¹² on your
calculator, type 1 EXP 12.

RULES OF STANDARD FORM

Rule	Formally	Example	
 Numbers are represented as products of powers of 10. 	a×10 ^b	2×10^3 Not 2×11^3	
2. <i>a</i> is a decimal between 1 and 10 (or between -1 and -10)	1 <i>≤ a</i> < 10	2.5×10^{5} Not 25×10^{4}	
3. <i>b</i> is an integer	b∈l	1.0 × 10 ⁻² Not 1.0 × 10 ^{-2.5}	

EXAMPLES

Convert **a**-d to standard form. **e-h** to ordinary decimals.

(a) 20 = 2	$2 \times 10 = 2 \times 10^{1}$	(e)	$5 \times 10^2 = 5 \times 100 = 500$
(b) 300 =	$3 \times 100 = 3 \times 10^{2}$	(f)	$1.5 \times 10^3 = 1.5 \times 1000 = 1500$
(c) 0.2 =	$2 \times 0.1 = 2 \times 10^{-1}$	(g)	$1 \times 10^{-1} = 1 \times 0.1 = 0.1$
(d) 0.03	$= 3 \times 0.01 = 3 \times 10^{-2}$	(h)	$2.5 \times 10^{-2} = 2.5 \times 0.01 = 0.025$

ACTIVITY

Write each number in standard form:

(a)	100	(d)	1	(g)	0.001
(b)	10	(e)	0.01	(h)	10,000
(c)	0.1	(f)	1000	(i)	100,000

SUSBSTRAND 2.4 ACCURACY OF MEASUREMENETS

LESSON 33

LO: Write measurements correct to nearest unit required.

ROUNDING

- Is done so that the answer has the same number of significant figures as the number in the calculation with the least number of significant figures.

•	An accurate measure- ment is as close to the						
	true value as we can						
	measure.						
	An approximate meas-						
	urement is rounded off for						
	convenience.						
	In general, the more						
	decimal places a meas-						
	urement has, the more						
	accurate it is.						

EXAMPLES

- 1. $16.23 \div 1.72 = 9.4360465$ (ROUNDED OFF TO 2 DP = 9.44)
- 2. $\frac{19.35 X 4.2}{6.81} = 11.9 (1 \text{ DP})$

*WHENEVER ROUNDING IS DONE, THE ACCURACY OF ROUNDING SHOULD BE STATED.

ACTIVITY

Write to the nearest 10 m:

(a)	12 m	(c)	-33.5 m	(e)	933.4 m
(b)	49 m	(d)	1687 m	(f)	299 m

Write to the nearest 0.1 g:

(a)	0.35 g	(C)	13.26 g	(e)	1.1189 g
(b)	1.94 g	(d)	0.006 g	(f)	0.95 g

Write the following measurements correct to the nearest whole number (i.e. round them to the nearest whole number):

(a) 3.4 m (c) 12.5 g (e) 1.05 A (b) 5.6 cm (d) 9.49 mL (f) 10.92 m

LESSON 34

LO: Give appropriate upper and lower bounds for data given to a specified accuracy.

: Write an inequality for the actual measure.

ACCURACY OF A REPORTED MEASUREMENT

- The **reported value** (recorded value) of a measurement is the value that is given.
- The **actual value** of a measurement is from ¹/₂ unit below to ¹/₂ unit above the reported value.

EXAMPLES

- 1. The length of a pen is recorded as being 14.4cm, its actual length lies between 14.35 and 14.45cm.
- 2. The time taken for a car to travel down a street was written down as 12 s. The actual time taken lies between 11.5 s and 12.5 s.

<u>STEPS</u>

To calculate the limits of accuracy for any measurement, proceed as follows:

Lower limit: reduce the last significant figure by 1 and 'add a 5' to the end of the number (adding a decimal point if required). Thus 14.4 becomes 14.35, and 12 becomes 11.5. Note that 2.50 becomes 2.495.

Upper limit: 'add a 5' to the end of the number (adding a decimal point if required). Thus 14.4 becomes 14.45, and 12 becomes 12.5.

Example F: The side length of a square is given as 11.5 cm. Between what limits does its perimeter lie?

Solution: The lower limit of accuracy of the measurement is 11.45 cm. The upper limit of accuracy of the measurement is 11.55 cm. Therefore the perimeter lies between $4 \times 11.45 = 45.8$ cm and $4 \times 11.55 = 46.2$ cm.

Suppose you are told that a pencil is 8 cm long. What is the actual (true) length of the pencil?

Figure 5.13 If the length of a pencil is *reported to be* 8 cm, its length was measured to the nearest cm. Thus, the pencil could have been as short as 7.5 cm or as long as 8.5 cm.

Expressing a measurement as an inequality

In figure 5.13, the *reported length* of the pencil is 8 cm:

l = 8 cm

The actual length is between 7.5 and 8.5 cm. We can write this as an inequality:

 $7.5 \le \ell < 8.5^*$

*We say < 8.5 because if ℓ were equal to 8.5, it would have been rounded up to 9.

ACTIVITY

- The voltage in a power line is reported as 220 volts, to the nearest 10 volts.
 - (a) Find the maximum and minimum possible voltages.
 - (b) Write the voltage as an inequality.
- Merilyn measured a line segment and announced that it was 10 cm long, to the nearest cm.
 - (a) Draw three lines of different length that are "10 cm long to the nearest cm."
 - (b) What is the length of the shortest line Merilyn could have measured?
 - (c) What is the length of the longest line she could have measured?
- The lengths of four pencils, 18, 12, 9, and 14 cm were measured to the nearest cm.
 - (a) If the pencils were lined up end-to-end, what would be the greatest possible length?
 - (b) What would be the smallest length?
 - (c) Write the length as an inequality.